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Abstract from closed-phase analysis and GMMs; (4) formant cen-

This paper describes the one-speaker detection ster frequencies, formant bandwidths, and fundamental

tems submitted by AFRLtHEC for several of the train- frequency with GMMs (denoted here by FMBWFO); and
ing asubmitte d itions inRECfrsvalo the 2005 tSpeakerin (5) language modeling on the words from speech recog-
ing and testing conditions in the 2005 NIST Speaker nition transcripts (denoted here by WLM). For testing or
Recognition Evaluation. For each condition, the over training conditions involving short speech files, the scores
all system score was the weighted combination of scores from the MFCC, FMBWFO, and LPCC systems were
from several component systems. The component sys- combined using a single-layer perceptron (SLP). For test-
terns were based on (1) mel-frequency cepstral coeffi- ing and training conditions involving larger amounts of
cients (MFCCs) and Gaussian mixture models (GMMs); speech data, the score combination was done in two
(2) MFCCs and phoneme-specific GMMs (PS-GMMs); stages. First, the scores from fifteen PS-GMM systems

(3) linear-prediction-based cepstral coefficients (LPCCs) were combined using an SLP. Then, the output score from

from closed-phase analysis; (4) formant center frequen- the SLP was combined with the scores from the MFCC,

cies, formant bandwidths, and fundamental frequency FMBWF0, LPCC, and WLM systems to yield the final

(FMBWFO); and (5) word language modeling (WLM). score.

The score combination was done using single-layer per- We show tha. comared to the baseline

ceptrons, with the grouping of the component systems de- th

pending on the lengths of the training and testing files. MFCC/GMM system, the inclusion of the FMBWFO and

For some of the testing and/or training conditions involv- LPCC systems improved the performance for some of the

ing ten-second speech files, the system performance im- training and/or testing conditions involving ten-second

proved from the inclusion of the FMBWFO and LPCC speech files, while the inclusion of the MFCC/PS-GMM

systems, while the MFCC/PS-GMiM system provided ad- system improved the performance for the training and

ditional benefits in the one-conversation testing conch- testing conditions involving larger amounts of data.

tions involving larger amounts of training data. An outline of the paper is as follows. The next section
briefly describes the 2005 evaluation conditions consid-

1. Introduction ered in this paper. Section 3 describes the component sys-
tems as well as the speech activity detector (SAD) used

This paper describes the speaker recognition systems sub- with some of the GMM-based systems, while Section 4
mitted by AFRLJHEC for the (four-wire) one-speaker de- describes the development of the score combination sys-
tection conditions in the 2005 Speaker Recognition Eval- tem. Section 5 presents the evaluation performance re-
uation (SRE) sponsored by the National Institute of Stan- sults, and Section 6 presents the results of some post-
dards and Technology (NIST) [1].' One of the recent evaluation experiments aimed at improving the use of the
trends in speaker recognition is the fusion or combina- PS-GMM system. Finally, Section 7 presents the conclu-
tion of the output scores from several systems such as sions.
in [3] to provide an overall score, and our system was
similar in this regard. For each condition, the overall 2. The NIST 2005 Speaker Recognition
system score was the weighted combination of scores Evaluation
from several component systems. The component sys-
tems were based on (1) mel-frequency cepstral coeffi- The NIST 2005 SRE consisted of 20 distinct tasks [1].
cients (MFCCs) and Gaussian mixture models (GMMs); Here, we consider the eight standard one-speaker detec-
(2) MFCCs and phoneme-specific GMMs (PS-GMMs); tion tasks, consisting of four training conditions by two
(3) linear-prediction-based cepstral coefficients (LPCCs) testing conditions. The training conditions all involved

four-wire (two-channel) conversations and were defined
Opinions, interpretations, and conclusions are those of the authors four- wi ng ontsations an ere efi-

and are not necessarily endorsed by the United States Air Force. by the following amounts of data: (1) an excerpt esti-
'The AFRLI/EC system submitted for the conditions requiring mated to contain approximately 10 seconds of speech of

speaker segmentation and clustering is described in [2]. the target on its designated side (designated as 10sec4w),

AFRLIWS 0 6 - 0 4 3 0Ail o 6-o67



(2) one conversation of approximately five minutes total subsection, while the unique aspects of each feature set
duration with the target speaker (designated as 1 conv4w), are discussed in their respective subsections.
(3) three conversations involving the target speaker (des-
ignated as 3conv4w), and (4) eight conversations involv- 3.1.1. Overview of GMM-Based Systems
ing the target speaker (designated as 8conv4w). The test-
ing conditions involved either (1) 10 seconds of speech The GMM-based systems, regardless of feature set, all
(designated as 10sec4w) or (2) one five-minute conver- used Version 2.1 of the MIT Lincoln Laboratory (MIT-
sation (designated as lconv4w) as in the 10sec4w and LL) MFCC/GMM system [5] with 2048 mixtures per
I conv4w training conditions, respectively, model and diagonal covariance matrices for each mixture.

In addition to the speech files, NIST provided tran- All of the GMM-based systems used a common
scripts produced by an English-language speech recog- speech activity detector (SAD), 2 which worked in three
nition system from BBN with word error rates typically stages. The first stage utilized a two-state speech/non-
in the range of 15-30% for English conversational tele- speech Hidden Markov Model (HMM) with MFCCs as
phone speech. English language transcripts were pro- the features. The second stage refined the HMM out-
vided for all files, despite the fact that some of the files put by applying an energy-based detector. The final
contained speech in other languages-namely, Arabic, stage post-processed the output by reclassifying as non-
Mandarin, Russian, and Spanish. speech any segments labeled as speech that were less

NIST compares system performance in two major than 20 msec in duration. The MFCC/HMM portion of
ways. First, NIST uses a detection cost function, CD, the SAD was built using HTK from Cambridge Univer-
defined as a weighted sum of miss and false alarm prob- sity3 using 64 mixtures per state. The energy-based de-
abilities: tection was performed using the MIT-LL xtalk program

from their MFCC/GMM speaker recognition system.
CD = CMPMITPT + CFAPFAINT(1 - PT), The cepstral-coefficient-based systems (i.e., all of

the GMM-based systems except the FMBWFO system)
where CM is the cost of a miss (chosen by NIST as 10), shared a number of additional similarities. Each set of
CFA is the cost of a false alarm (chosen by NIST as 1), cepstral coefficients had RASTA filtering [6] applied and
PT is the a priori probability of a target (chosen by NIST included the deltas of the features. After the RASTA fil-
as 0.01), PMIT is the probability of a miss given a tar- tering of the cepstral features and the deltas were added,
get trial, and PFAINT is the probability of a false alarm feature mapping [7] was also used; however, the channel
given a non-target trial. PMIT and PFAINT are a function was always chosen using the channel determined by the
of system performance and the chosen detection thresh- MFCCs. Finally, the mapped features were normalized
old. For a given system, chosen costs, and a priori target to have zero mean and unit variance.
probability, there is a threshold that yields a minimum Gender-dependent T-norm [8] was applied (using
value of CD; we refer to this minimum value of CD as 120 models for each gender), with the exception that
the minDCF value. Second, NIST uses plots of PMIT gender-independent T-norm (with 240 models) was used
versus PFAINT, called Detection Error Trade-off (DET) in the 10sec4w training conditions. For the 10sec4w-
plots [4], to show how system performance varies for a l0sec4w training/testing condition, T-norm models were
wide range of operating points. In addition to these two built framning/tes ondatior t-norm on-presentations of performance, we will also use the equal built from 30 seconds of data. For the other training con-
pesetatis o(EER),formane we wil (o use then ditions, T-norm models were built using approximately
error rate the value of PMIT (or PFAINT) when two minutes of data.
E JT = PFAINT' The background model data consisted of approxi-

3. Component Systems mately 16 hours of speech from a variety of sources,including the NIST 2001-2003 evaluations (for carbon

The overall system consisted of various combinations of button land line data, electret microphone land line data,
the scores from five component systems, depending on and digital cellular data) and the OGI National Cellular
the length of the training and testing files. Four of the Database4 (for analog cellular data). The background
component systems were based on GMMs, while the model data were balanced for gender and the four previ-
WLM system involved language modeling. The next sub- ously mentioned channel types, and these channels were
section discusses the GMM-based gystems, while Sub- the ones used in the feature mapping. The T-norm model
section 3.2 discusses the WLM system. data came from NIST 2001-2003 evaluation data.

3.1. GMM-Based Systems 7The MFCC/PS-GMM system only used this SAD if the SAD from

the SONIC speech recognizer failed to find any speech frames.
This section discusses the various GMM-based systems. 3Available at: http:/fhtk.eng.cam.ac.uk/
Common aspects of the systems are presented in the next 4See: http://cslu.cse.ogi~edu/corpora/corpCurrent.html



3.1.2. The MFCC/GMM System 3.1.5. The MFCC/PS-GMM System

Nineteen MFCCs were computed using the MIT-LL The basic idea of the MFCC/PS-GMM system is to

GMM system [5] in the bandwidth of 300-3138 Hz ev- assign each feature vector a phoneme label, build a

ery 10 msec. RASTA filtering was applied to the MFCCs GMM for each phoneme for each speaker, score each la-

and deltas were then calculated. Only frames labeled beled feature vector against the proper phoneme-specific

as speech by the SAD (discussed in Section 3.1.1) were model, and combine the phoneme-specific scores to

used. The remaining processing was performed as dis- form a single output score. The MFCC/PS-GMM sys-

cussed in Section 3.1.1. In building target and T-norm tern was similar to the system described in [13] that

models, only the mixture means were adapted from those used phoneme-only adaptation, but with some notable

of the background model. changes. First, this year's system used MFCCs that were
computed as in the MFCC/GMM system described in
Sections 3.1.1 and 3.1.2, including the use of feature

3.1.3. The LPCC System mapping, which was not used in the system of [13]. Sec-
The LPCC system calculated 16 cepstral coefficients (ex- ond, each feature vector was associated with a phoneme

cluding the 0 th cepstral coefficient) from the linear pre- label as output by the SONIC speech recognizer (Ver-

diction (LP) parameters derived from smoothed closed- sion 2.0-beta2) from the University of Colorado at Boul-

phase analysis as described in [9]. The cepstral coeffi- der [14, 15], whereas the system of [13] used phoneme

cients were computed from the L.P parameters using the labels from speech recognition transcripts provided by

recursion outlined in [10]. The features were only cal- Stanford Research Institute for the NIST 2003 Extended

culated for voiced speech frames, where the voicing was Data Task. Thus, the phoneme alignments were con-

determnined using the get-Jl[ program from the Entropic structed from the state file output by SONIC, and the fea-

Signal Processing System (ESPS). RASTA filtering was ture vectors for a given phoneme were then scored with

applied, and the feature set included the deltas of the fea- a GMM built for that phoneme. Third, in contrast to the

tures. The remaining processing was performed as dis- system of [13], the GMM for each phoneme used 2048

cussed in Section 3.1.1. In building target and I-norm mixtures. Finally, only phonemes from the following set

models, only the mixture means were adapted from those were used: {AE, AH, AX, AY, DH, EH, EY, IH, IY, L, M,

of the background model. N, OW, S, Y}, in contrast to the larger set used in [13].
There are some additional points worth noting. First,

SONIC has its own SAD, so the SAD described in Sec-
3.1.4. TheFMBWFO System tion 3.1.1 was only used if the SONIC SAD returned no
The FMBWFO system was similar to that of [11]. First, speech frames. Second, the acoustic and trigram lan-

guage models used with SONIC were trained using land
FO and the probability of voicing were determined ev- line data from the Switchboard database. 6 Third, tar-
ery t0 msec using the ESPS get4fO command, which im- geta T-om phemS pcific d el were adt

plements the pitch tracking algorithm described in [12]. from the background phoneme-specific models by updat-
Next, the first three formant center frequencies (FI-F3) ing only the means. Finally, the scores for each phoneme
and the first three formant bandwidths (B l-B3) were de- (after the phoneme-dependent T-norm was applied) were
termined from Snack Version 2.2.2 from KTH. 5 Each FO combined with a perceptron neural net that was trained
value was converted to log scale. Each formant center using the MIT-LL LNKnet package. 7 The neural net used
frequency and bandwidth value was converted to radians. no hidden layers, and the output nonlinearity was a stan-

Extracted frames had (1) to be declared to be speech dard sigmoid. The neural net was trained using data from
by the SAD, (2) to be voiced; (3) to have FO < 250 Hz; the NIST 2004 Evaluation.
and (4) to have (Fl, F2, F3) $ (500 Hz, 1500 Hz,
2500 Hz). Condition (3) was imposed because the pitch 3.2. The WLM System
extractor was found to output pitch-doubled frames at
times, while condition (4) was imposed to eliminate The WLM system is motivated by the original work
frames where the formant tracker failed (at which point it done by Doddington on idiolectal differences between
would output the default values of 500, 1500, and 2500). speakers [16]. The CMU-Cambridge Language Model-

These features were used in the GMM system, and ing Toolkit8 (Version 2.05) formed the basis of this sys-
tem. The words from the NIST-supplied transcripts were

T-norm was applied as discussed in Section 3.1.1. Target assembled into pseudo sentences, where a pause greater
and T-norm models were adapted from the background than one second between words defined a sentence break.

model by updating the weights, means, and variances.

6
See http://www.ldc.upenn.edu

7
Available at: http://www..Il.mit.edu/ISTl'nknet

5
Available at: http://www.speech.kth.se/snack 8Available at: http://svr-www.eng.carn.ac.uk/ prc I 4/toolkit.html



Using no sentence breaks, where each conversation side Using the ten split training files, ten SLPs were built and
became one sentence, yielded worse performance than applied to the system scores for their respective split con-
using pseudo sentence breaks when tested on previous -trol files. The score combination results for the splits
NIST evaluations. were concatenated, and the thresholds to be applied for

Bigram language models with back-off were trained the 2005 evaluation were determined. Then, new SLPs
with the following parameters set in the toolkit: top were built from the entire 2004 control file for each con-
20,000 words, Witten-Bell discounting, and zero cut-offs. dition to be applied to the 2005 evaluation, but using the
Target models were trained by concatenating all the sen- thresholds determined from the combination of the splits.
tences for each of the conversations allowed for each
model, while the background model was built in a sim- 5. Evaluation Results
ilar way, but with all the sentences from all the files that
made up the background model. The background model This section presents the performance results of the indi-

data came from Switchboard II. vidual component systems as well as that of the overall

To compute a score using the WLM system, the sen- submitted system for each of the one-speaker detection

tences from a test file were tested against a claimant conditions. The performance is shown using DET plots,

model and the background model. The score for a given and in some cases, the corresponding system minDCF

test file and claimant model pair was computed as fol- and EERs are given.

lows. Let Bc be the set of bigrams in the claimant
model, C; BB be the set of bigrams in the background 5.1. 10sec4w Testing Conditions

model; and BT be the set of bigrams in a test file, T. Let Figures l(a)-(d) show the performance of the compo-
BTCB = BT A Bc n BB, and let NTCB be the number nent and combined systems for l0see4w testing with
of bigrams in BTCB. Let Pb,c be the probability of bi- the training conditions of i0sec4w, lconv4w, 3conv4w,
gram b in model C and Pb,B be the probability of bigram and 8conv4w, respectively. The minDCF values for the
b in the background model. The score for T against the combined systems for the 10sec4w, lconv4w, 3conv4w,
claimant model C was computed as: and 8conv4w training conditions were 0.0860, 0.0590,

1 0.0522, and 0.0485, respectively, while the EERs were
.s(T, C) N-CB > Iog(Pb,c) - log(PbB). 28.20%, 17.02%, 13.30%, and 12.65%, respectively.

bEBTCB From the plots, one can see that the combination of the
LPCC, FMBWFO, and MFCC/GMM systems leads to

Thus, unknown or non-matching bigrams were ignored. substantial performance improvement relative to that of
One final step was taken with the inclusion of a the standard MFCC/GMM system for the 10sec4w train-

gender-independent T-norm. Fifty male and fifty female ing condition; however, the combination systems do not
models were built using two conversation sides of data yield any substantial performance improvement for the
from Switchboard 1I with transcripts supplied by NIST lconv4w, 3conv4w, and 8conv4w training conditions.
that were generated by a BBN speech recognizer. 9  The FMBWFO and LPCC systems combine with the

MFCC/GMM system to yield a 6.0% relative improve-
4. System Combination and Thresholds ment in minDCF and a 10.9% relative improvement in

For all of the one-speaker detection training and testing EER over those obtained solely with the MFCC/GMM

conditions, the component system scores were combined system (minDCF = 0.0915, EER = 31.65%). Also, in the

using SLPs built from the 2004 evaluation data using 10sec4w training condition, the FMBWFO system per-

LNKnet. For each training and testing condition, the test forms almost as well as the MFCC/GM4 system.

control file (i.e., the list of test file/target model pairs) 5.2. Iconv4w Testing Conditions
from the 2004 evaluation was split into ten disjoint parts.
In other words, there were no test file/target pairs com- Figure 2(a) shows the performance for the 10sec4w-
mon to two or more parts (thus, one could concatenate lconv4w training/testing condition. Note that for the
the parts to recover all of the test file/target model pairs l0sec4w-lconv4w condition, the roles of the training and
from the original control file). Further, all of the test files testing files were reversed. Thus, models were built us-
from a given speaker were contained in a single split con- ing the lconv4w files from the test list, and the frames
trol file. For each split control file, a training control file of the I0sec4w training files were scored against these
was constructed from the original control file such that models. With this role reversal, this condition was similar
it had no speakers in common with the split control file to the lconv4w-I0sec4w condition shown in Figure I(b).
either in terms of test files or in terms of target models. Figure 2(a) shows that the FMBWFO and LPCC systems

9 Note that the recognizer used to generate transcripts for Switch- provide a benefit over the MFCC/GMIM system alone,
board II does not appear to be of the same vintage as that used to gea- improving the minDCF from 0.0708 to 0.0675 and im-
crate transcripts for the 2005 Evaluation data, proving the EER slightly from 20.75 to 19.93%.
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Figure 1: DET plots for the l~sec4w testing conditions showing the performance of the LPCC, FMBWFTO, and
MFCC/GMM systems with that of the combined systems for the (a) l0sec4w, (b) Iconv4w, (c) 3conv4w, and (d) 8conv4w
training conditions.
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Figure 2: DET plots for the Ilconv4w testing conditions showing the performance of the LPCC, FMBWFO, MFCC/GMM,
MFCC/PS-GMM, and WLM systems with that of the combined systems for the (a) l0sec4w, (b) Ilconv4w, (c) 3conv4w,
and (d) 8conv4w training conditions.



1conv4w 3conv4w 8conv4w

System minDCF EER minDCF EER minDCF[ EER
MFCC/GMM 0.0383 10.33% 0.0293 7.11% 0.0265 7.09%
MFCC/PS-GMM 0.0381 10.33% 0.0271 6.70% 0.0220 5.75%
Cl: Original Comhinatton 0.0371 9.15% 0.0249 6.22% 0.0197 5.66%
C2: Combination Without Sigmoid 0.0335 8.88% 0.0239 6.02% 0.0187 5.30%

Relative Improvement from C1 3.2% 11.4% 15.0% 12.5% 25.7% 20.2%
Relative Improvement from C2 12.5% 14.0% 18.4% 15.3% 29.4% 25.2%

Table 1: EER and minDCF for the MFCC/GMM, the MFCC/PS-GMM, and two combination systems for lconv4w
testing with lconv4w, 3conv4w, and 8conv4w training. The first combination system, Cl, is the original combination
system discussed in Section 4; the second combination system, C2, is the combination system with the sigmoid removal
discussed in Section 6. Also shown are the improvements in the performance of the combination systems, Cl and C2,
relative to that of the MFCC/GMM systems for each condition.

Figures 2(c)--(d) show the performance of the sys- NIST 005 DETECTION RESULTS WITH SIGMOID REMOVAL

tems for l conv4w testing over the training conditions
of lconv4w, 3conv4w, and 8conv4w, respectively. The
MFCCJPS-GMM system outperforms the MFCC/GMM K
system for the 8conv4w training condition, but doesn't
significantly outperform it for the lconv4w and 3conv4w 20

training conditions. The combination system outper-
forms the MFCC/GMM system alone for the 3conv4w ;r o ...
and 8conv4w training conditions and for the l conv4w
training condition with 1% < PFAINT. Table I shows 5 r
the EERs and minDCF values for the MFCC/GMM,
MFCCPS-GMM, and the original combination system,
designated C 1, for the l conv4w, 3conv4w, and 8conv4w
training conditions (along with the performance of a sec-
ond combination system, designated C2, that uses a sig- 0.5 1 3CONV4W-iCONV4W ORIGINAL COMBINATION

moid removal procedure to be discussed in Section 6). 0.2 - ONVW-CONW ORIINAL COMINAION

Also included are the relative improvements in the per- 8CONV4W-1CONV4W WITH StGMVOID REMOVAL

formance of the combination systems over that of the 0.1

MFCC/GMM systems. One can see that the Cl combi- 0.1 0.2 0ý5 1 2 5 10 20 40

nation system outperforms the MFCC/GMM system by FalseAla"mprobabdilyin%)

11.4-25.7% in minDCF and EER for these conditions,
except for the minDCF for I conv4w training, which is Figure 3: DET plot comparing the MFCC/GMM and

only improved by 3.2%. combined system performance with and without the
sigmoid for lconv4w testing under the lconv4w and

6. Post-Evaluation Experiments 8conv4w training conditions.

After the evaluation, additional experimentation was con-
ducted in an effort to improve the utilization of the method, the sigmoid removal yield substantial perfor-
MFCCiPS-GMM system scores in the overall combined mance improvement in the I conv4w training condition in
system. After training the first-stage SLP applied to the the low false alarm region, resulting in a 9.7% relative im-
MFCC/PS-GMM scores, the output sigmnoid of the SLP provement in minDCF. In contrast, the sigmoid removal
was removed. The combined MFCC/PS-GMM score yields only modest additional improvement over that pro-
without the sigmoid was then used along with the four vided by the Cl combination system for the 3conv4w and
other system scores to train the second-stage SLP. 8conv4w training conditions.

Figure 3 shows the result of removing the sigmoid
for lconv4w and 8conv4w training with lconv4w test- 7. Conclusions
ing, while Table 1 shows the corresponding minDCF and
EERs (as well as the values for the 3conv4w training We have discussed the details and presented the perfor-
case) in the row designated as "C2: Combination Without mance of the AFRL/HEC one-speaker detection systems
Sigmoid." Relative to the original Cl score combination submitted for the 2005 NIST Speaker Recognition Eval-
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tem in some of the conditions involving speech files on
the order of 10 sec. The MFCC/PS-GMM provided ad- [7] D. Reynolds, "Channel robust speaker verification

ditional performance benefit over that provided solely by via feature mapping," in Proc. of the IEEE Interna-
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